36. For \( -\frac{\pi}{2} < x < \frac{\pi}{2} \), if \[ F(x) = \int_0^{\sin x} \frac{dt}{\sqrt{1 - t^2}}, \] then \( F'(x) = \) ?






Answer is: option3

\( 1 \)

Solution:

If:

\( F(x) = \int_a^{g(x)} f(t)\,dt \),

then:

\( F'(x) = f(g(x)) \cdot g'(x) \)

In our case:

  1. \( f(t) = \frac{1}{\sqrt{1 - t^2}} \)
  2. \( g(x) = \sin x \), so \( g'(x) = \cos x \)

Apply the rule:

\( F'(x) = \frac{1}{\sqrt{1 - (\sin x)^2}} \cdot \cos x \)

\( 1 - \sin^2 x = \cos^2 x \Rightarrow \sqrt{1 - \sin^2 x} = |\cos x| \)

But since \( x \in \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \), we know \( \cos x > 0 \), so:

\( F'(x) = \frac{1}{\cos x} \cdot \cos x = 1 \)

Hence Option C

Previous Next