Answer is: option2
\( \frac{\cos 4}{4} \)Solution:
Let: \[ F(x) = \int_0^{u(x)} f(t)\,dt, \quad \text{then} \quad F'(x) = f(u(x)) \cdot u'(x) \]
Here:
- \( u(x) = \sqrt{x} \Rightarrow u'(x) = \frac{1}{2\sqrt{x}} \)
- \( f(t) = \cos(t^2) \)
So: \[ F'(x) = \cos((\sqrt{x})^2) \cdot \frac{1}{2\sqrt{x}} = \cos(x) \cdot \frac{1}{2\sqrt{x}} \]
\[ F'(4) = \frac{1}{2\sqrt{4}} \cdot \cos(4) = \frac{1}{2 \cdot 2} \cdot \cos(4) = \frac{\cos 4}{4} \]
Hence option B.